Should Baseball Players Olympic Lift? 5 Reasons Why Ours Don't

The snatch and the clean and jerk are amongst the most impressive feats a human being can perform.  These two events are so highly regarded that every four years countries from all over the world showcase their best lifters to compete for national pride in the Olympic games. Many of us have seen it on TV or YouTube: An athlete grabs a heavy barbell that's placed motionless on the ground, then creates enough tension throughout their body to break inertia and throw the barbell overhead with inhuman ease, speed, and fluidity.  This is a breathtaking display of the perfect blend of mobility, explosiveness, technique, and overall stability.

These “O-lifters,” when compared to athletes of other sports, are often associated with having increased numbers of type II muscle fibers, greater ability to produce power, superior vertical jumping ability, and greater levels of hypertrophy.

One may thus conclude that practicing these movements may lead to adaptations towards becoming a bigger, stronger, faster, more powerful athlete… and one would be correct!  Who wouldn’t want that?

Baseball is one of the most “power-based” sports around, due to the stop-and-go nature of the game.  Power is a key component in a successful baseball player, and each year SAPT excels at augmenting our baseball players ability to harness and produce power during their hitting, sprinting, and throwing.

Are the Olympic lifts a phenomenal tool to develop power and explosiveness? Absolutely. Is a strength coach wise to employ them with many of his or her athletes? Of course.

However, ask any of our baseball beasts how often they snatch, clean, or jerk during a training cycle at SAPT and you will probably find that the range of frequency falls between “never” and “0 times a week.”

Why? Well, here are 5 reasons why SAPT baseball players don't Olympic lift:

1. Plane-Specific Transference of Training Qualities

(Note: In general, movement is categorized into three different planes: sagittal, frontal, and transverse. Sagittal plane movement involves anything going front-to-back, without any involved rotation or leaning side to side. So, things like lunges, squats, sit-ups, deadlifts, sprints, box jumping, and Olympic lifts, all occur in the sagittal plane. Frontal plane movement examples include side lunges, side shuffles, and side raises. Transverse plane movement involves anything with a rotation component; a perfect example of this is the stroke Obi Wan used with his lightsaber to kill Darth Maul.)

To an extent, strength and power development is very specific to the plane of motion in which it is trained.  Sure, there will be a bit of carryover from one plane to another when it comes to transference of athletic qualities, but to truly maximize potential in a given plane, you need to train that plane, specifically!

Guess which planes of motion a baseball player remains in to hit, throw, and/or pitch? The frontal and transverse planes.

Now, guess what plane of motion the Olympic lifts exclusively take place in? The sagittal plane.

So, for the baseball athlete, how can they train outside of the sagittal plane in order to best enhance power production in the frontal and transverse planes? Which exercises will provide them the most bang for their buck, be time efficient, and have the most carryover to their sport?

It is here I argue that the answer doesn't lie with the Olympic lifts, but in med ball work and lateral jumping variations. These become an enormous asset to the baseball player; they are fun (few things beat throwing a medicine ball into a wall as hard as you can), fairly easy to learn, allow the athlete to demonstrate and forge power output in a concerted manner, and they're downright effective!

Here are just a few of the med ball variations and lateral jumps we use at SAPT. (We have over 30 variations in each category to cycle through.)

MB Cross-Behind Shotput

MB Cross-Behind Shotput w/Partner Pass

MB Heiden to Side Scoop Throw

MB Cyclone Overhead Throw to Wall

MB Hop-Back Side Throw

In-Place Heiden with Stick Landing

Single-leg Depth Drop to Heiden with Stick Landing

The options are virtually limitless.

Assuming they are already proficient in the sagittal plane - as one DOES need to learn to master that plane before attempting to train frontal and transverse, similar how one should learn to add and subtract before performing algebra - roughly 80-90% of the "power" development we utilize with our baseball guys takes place outside of the sagittal plane. The remaining 10-20% we will fill by having them perform sagittal-based movements such as KB swings, broad jumps, and speed deadlifts and speed squats.

2. Faulty Movement Patterns Overhead

Watch the majority of people put their arms overhead, and, if you know what you're looking for, you'll often find nothing short of a multiplicity of grody compensation patterns taking place along the entire kinetic chain. Yes, even in overhead athletes.

Tony Gentilcore has said that the majority of trainees must "earn the right" to press overhead, and I continue to nod my head in agreement with him. Watch someone press a bar overhead (or snatch or jerk it, as one would during an O-lift), and, using a classification system I learned in my college biomechanics class: their mechanics lie somewhere between poop and utter poop.

I hope it goes without saying that it'd be far from prudent to have these folks continually throw a loaded bar overhead at high speeds. However, the strength coach can't freak out about ALL overhead movements for the baseball player, as their sport does, in fact (get ready to have your mind blown....), necessitate them going overhead.

While we can certainly improve a baseball player's overhead mechanics by having them perform core stabilization drills, thoracic spine mobilizations, shoulder "corrective" drills, and improving lat length, there's still something to be said for doing a few, shoulder-friendly, loaded overhead activities to complement the corrective drills and give the athlete a chance to further ingrain solid overhead mechanics.

One of our favorites is the landmine press, as the neutral grip position opens up the subacromial space - giving the rotator cuff tendons more room to "breathe" - and the natural arc of the press grooves some nice scapular upward rotation. Not to mention, the core musculature has to work like crazy to keep the pelvis and ribcage in a stable position. I've yet to work with anyone - including myself, and I have a REALLY beat up shoulder - who has shoulder pain while landmine pressing.

Another option is to use the single-arm bottoms-up KB press, as many of the benefits of the landmine press still apply (scapular upward rotation, core stabilization, etc.) yet you get to train through an even greater degree of humeral elevation (flexion+abduction), and also receive some nice "reflexive" firing of the rotator cuff due to the kettlebell wanting to shake back and forth in your hand.

Both of the above exercises can be performed half-kneeling, tall-kneeling, standing in parallel stance, or standing in a staggered stance.

There are a host of other options as well, but the point is there are much less "dummy proof" methods of training the overhead position without resorting to a jerk or snatch. (Even though the O-lifts do look way cooler.)

3. Wrist and Elbow Concerns

To say the success of a baseball player's career is at least partly contingent upon the health of his wrist and elbow is akin to saying that Superman derives his power by absorbing and metabolizing solar energy from the Earth's energy; both are platitudes.

As Dan John aptly put it, the "Rule #1" a strength coach needs to live and breathe by is Do No Harm! 

To rely on Olympic lifts as the primary tool for developing the baseball athlete would make about as much as much sense crossing the the Atlantic Ocean in a one-man canoe. Or using a canoe of any size, for that matter. Could it be done? Sure. But do there exist other ways to accomplish the same goal, with a much lower risk of something undesired occurring in the process? You bet.

Given that, day in and day out, baseball players' wrists and elbows already take a wicked beating from pitching, throwing, and hitting, why compound the issue by performing lifts that stress those same bodily structures more than perhaps any other lift? Especially given that, as you saw earlier in this article, there exists a host of other training modalities one can employ to enhance athletic power.

Regarding the power and hang clean, most baseball players have a hard enough time even being able to comfortably get into the clean position for front squatting, without the mere position causing their wrists or forearms to scream, so why we would choose to add velocity and then CATCH in that position is beyond me. And, if we're discussing the snatch: the top, catch position places considerable levels of strain on the UCLs (ulnar collateral ligaments) of both elbows; if you follow professional baseball to any capacity, then you for sure know how important the UCL is to a baseball player. Tommy John Surgery, anyone?

One last point I'll add is that not only do you have the wrists and elbows taking a beating during cleans, but the AC (acromioclavicular) joint, as well, due to that poor fellow living smack dab in the middle of the barbell's landing zone. The AC joint is located just inside of the index fingers during the catch phase of a clean, and while professional Olympic lifters often "flow" into the catch phase with minimal impact, it's far from uncommon to find high school and college baseball guys literally slamming the bar onto their shoulder during the catch, as it can take years to make it a fluid transition.

Now, just because baseball players overuse their elbows and wrists, and we don't recommend the inclusion of cleans and snatches in their programming, does this mean they are to be babied, forever relegated to pilates as the most intense training they're "allowed" to perform? Don't be silly!

As demonstrated earlier, we use the countless other methods at our disposal for their power training, and then have them perform plenty of heavy lifting to develop strength, structural integrity, and throwing speed.

4. Sagittal Plane Dominance           

A typical training program for our baseball guys are rich with lifts such as squat variations, deadlift variations, lunges, glute bridges, step-ups, and the list goes on. Notice a pattern?  These are all movements that occur in the sagittal plane.  (We can argue about frontal and transverse stability components in the single leg exercises, valid points indeed... but let's save that for another day.)

The point is, although we dip into the other planes of motion, the majority of the work is sagittal.  Throwing in Olympic lifting variations just adds to the volume of sagittal plane work and takes time away from working the other planes of motion.

To build a properly balanced athlete, we have to save some room in the program for some work in the frontal and transverse planes which can include tons of variations of: lateral step-downs and step-ups, lateral lunges, single arm farmer’s walks, anti-rotation/pallof presses, prowler side-drags, jumping, hopping, and, as exhibited earlier, medicine ball drills.

5. Time

I hate to beat a dead horse, but I am going to have to bring up the token argument against Olympic lifting: It takes too long to learn.

When it comes to training competitive athletes, time is the major limiting factor.  With most of our baseball guys, who typically have 3-5 months of off-season training with us, we opt for a program consisting of exercises that don’t require such a significance prerequisite time-commitment for the learning process.  The price in time we must pay to proficiently learn and perform the snatch, clean, jerk, and their variations safely and effectively (as it doesn't do them any good to perform the lifts poorly) is often more costly than we care for.  Instead we use the modalities shown above in point #1, for supreme power development.

Another critical focal point we attend to for baseball power development is sprint work.  We spend a significant amount of time working on our athlete's sprint technique, stride length/frequency, change of direction speed and starting speed.

With such limited time (and not to mention recovery capacities; many of these guys are still in leagues or camps throughout the off-season) it is simply impractical to throw in the O-lifts into the mix.

If a baseball player never learns to snatch during his athletic career, does it really matter?  I’d be more concerned with his on-base percentage, runs, stolen bases, strikeouts, consistency, and health.

Read More

Intro: Overhead Athlete Basics

Note: Any time I use the phrase "overhead athlete" I'm referring to an athlete who's sport requires him or her to bring their arm(s) repeatedly overhead. The most common sports falling under this umbrella are baseball, volleyball, softball, swimming, tennis, and, perhaps the most awesome of the bunch, javelin. 

In the wake of SAPT's inception, back in Summer of 2007, arrived the immediate realization that overhead athletes would be the predominant population we'd be coaching and training within the walls of our facility. In fact, you could have nearly fooled me if you told me that the only competitive sports in the Fairfax, Mclean, Tyson's Corner, Vienna, and Arlington regions were baseball and volleyball!

Sure, we had, and still have, the pleasure of working with a host of people from countless other athletic "categories" - field athletes, track, powerlifting, endurance sports, water polo, fencing (yes, fencing), and military personnel - overhead athletes were and still remain roughly 80% of the folks we get to work with at SAPT.

As such, given such a large and varied sample size, and years to work with these individuals, we've had ample time to manipulate X, Y, and Z training variables to accurately delineate which constituents of a sound training program are going to most efficiently and effectively help the overhead athlete feel and perform at their best.

Throughout the month of August, we at SAPT are going to dedicate our time to providing you with solid and applicable information that you can immediately employ, be you a strength coach, physical therapist, sport coach, or athlete. And hey, even if you don't do anything related to overhead sports, you can still pick up some quality gems related to vertical jumping, shoulder-friendly pressing variations, Olympic lifting, sprinting, and a plethora of other topics that will undoubtedly pique your interest.

The primary reason we are devoting an entire month to the topics of training and management of overhead athletes is that it remains abundantly clear that there still exists a unfortunate paucity of coaches - sport and strength coaches working with youth, amateur, Division I, or Professional athletes - who truly understand the unique demands overhead athletes face, and how to account for these demands both on the practice field and in the weight room.

Due to the awful tragedy of early sports specialization, and the lack of coaches and parents (despite being well-intentioned) who understand how to implement a sound, yearly training model (that includes time OFF the court or field), we are seeing injuries occur in players at the young age of 13 that didn't used to happen until the age of 25 (or ever). Baseball players are realizing too late that's actually not a good idea to throw year-round, and youth volleyball players are experiencing an unprecedented volume of upper and lower extremity issues that could have been prevented simply by taking a season to play a different sport, and/or immersing themselves in a solid strength & conditioning program.

The overhead athlete's arm and shoulder continually undergo insane stressors that need to be accounted for; and not only by the strength coach but the sport coach as well, as they control how many times in a practice an athlete throws, hits, or jumps.

Let's take just a quick look at what a baseball pitcher's arm is assaulted with every time he throws a baseball:

- His humerus (upper arm bone) undergoes internal rotation at roughly 7,200° per second. In case you're wondering, and would like a more scientific way of describing things: that is a crap ton of revolutions in a very short period of time. - His elbow has to deal with approximately 2,500° of elbow extension per second.His glenohumeral (ball-and-socket) joint experiences about 1.5x bodyweight in distraction forces.

And that's just the tip of the iceberg, as we haven't even dived into the other demands the wirst, elbows, and shoulders face, let alone what occurs at all the joints below the shoulder.

These demands simply won't be attenuated by doing a few hundred reps of band work before and after practice, let alone throwing the athlete into the proverbial squat-bench-deadlift program overseen by the high school football coach.

Over the next four weeks, you can expect to find us discussing:

  • Practical warm-ups for the overhead athlete
  • Why power development for baseball, softball, and volleyball players needs to be approached differently compared to many other sports
  • Olympic lifting for overhead athletes
  • The truth about vertical jump training for volleyball players
  • The myriad myths and fallacies surrounding "shoulder health" and "arm care" programs
  • Biomechanical asymmetries - both undesired and desired - that accrue in an overhead athlete's body due to the inherent nature of the sport, and what to do about them
  • Energy system training
  • Nutrition for fuel during tournaments and game day
  • And, of course, as many Star Wars and Harry Potter references that we can find room for
  • And much, much, more

All of us at SAPT are looking forward to the next month together!

Read More

You Want To Be Fast, Huh?

Intern Post By Goose & Josh:

                      Get infinity times faster by going beyond your understanding of speed.

Humans have an addiction to speed. No matter what we do we are never fast enough. Whether it is from running to jets flying over the open sky we build/engineer these bodies to go faster. The question is how do we engineer speed and how do we do it properly? We can break it down into 5 parts strength, cardiovascular endurance, muscular endurance, form, and genetics. Having a firm understanding of these 5 elements will allow you to harness a power that the human race strives to attain.

Strength

Being strong does not mean being able to lift heavy things and put things back down. It is the matter of building a foundation for speed. Without strength speed cannot be accomplished. Strength determines the rate of force development (RFD) meaning how fast your muscles contracts to produce a maximal amount of force. With minimal strength there is low RFD meaning that the muscles in your body will not be able to get you to the finish before the guy that can produce the same amount of force is a shorter period of time. Strength training, done correctly, can and will excel your RFD to the next level.

Strength training is also vital to injury prevention. It is much more beneficial and time efficient for the athlete to prevent and injury versus recovering from one. Resistance training strengthens one’s connective tissue and increases the size and strength of ligament. Strong ligaments especially in areas such as the Achilles are necessary for an athlete to keep running at top speed. The physical stress from resistance/strength also increases bone density, which will help prevent overuse injuries such as stress fractures.

                    Did you know that the Hulk can run at least 215 mph? That is pure strength.

Well some of you also may be thinking, “I lifted once and I got hurt…” Well yes improper lifting can hurt anyone just like improperly can cause stress fractures. Make sure you know exactly what you are doing and if you do not ask people who do. I’ll admit it is difficult to find people who know how to teach lifts properly and this requires research. Well you might be thinking this is a lot of work just to pick things up and put them back down. Let me tell you this, if you truly want to get faster then you will do whatever you can to get it done.

P.S. As strength coaches it is our responsibility to understand that we are responsible not just for making them lift more weights but for the athletes overall health and well being.

P.P.S. If you still are not convinced about building strength and its obvious benefits then check out this great article: http://saptstrength.com/2013/06/17/lifting-running-monster-benefits-an-intern-post/ It should help clear up some doubts.

Cardiovascular Endurance

What’s the point of running fast if your heart cannot keep up? Cardiovascular endurance determines how long your heart rate can pump at a high rate. The heart is the most important muscle in your body and without it there is no life, thus no speed. To have a healthy heart can mean to add more years to your life, which means more time to go fast!

Yes sure a healthy heart is great and goes without saying, but honestly how does this effect my force production to create more SPEED!? Well let’s put it this way, your heart pumps blood through out your body right? Well that includes your muscles too. What muscles need in order to function is oxygen. Well guess what is in the blood going to your muscles, OXYGEN!

So that being said if your heart poops out and pumps less blood after 10 seconds, your muscles start getting less and less oxygen. If your muscles are not getting enough of oxygen then the they will have a much harder time contracting thus = less force production. So the longer the heart can pump blood without straining the longer your body can propel itself at full speeds.

Having strong cardiovascular endurance is also vital for recovery between your bursts of intense speed. The aerobic energy system is responsible for full recovery between bouts of sprints, so that you can sprint fast on each successive sprint rather than seeing drops in performance. It clears out metabolic byproducts of anaerobic work such as CO2. Clearing out the waste allows for ATP to be produced and ATP is what we use for energy to create explosive speed.

             Long story short DON’T skip cardio day! Never know when a zombie will show up

Muscular Endurance

    The body derives its energy from three different energy systems, the Phosphagen, Anaerobic, and Aerobic Systems. Generally speaking the Phosphagen System provides energy for all out efforts lasting 6 to 15 seconds, depending on the nature of the activity. Meanwhile the Anaerobic System provides the energy for submaximal bursts of speed lasting 30 seconds to2 minutes. Finally the Aerobic System provide a low but constant flow of energy for long lasting activities such as distance running. Whenever you exercise all three of the energy systems are turned on however the amount of energy you get from each one varies depending on duration, intensity, and the nature of the activity.

When sprinting you primarily rely on the Phosphagen System and the Anaerobic System for energy. The Aerobic system is being utilized during the activity but its main role is providing energy for recovery. This is why it is important to have a strong cardiovascular system, it’ll help you recover faster so you can sprint for longer. Muscular endurance training teaches your body how to push the limits of these energy systems and how to recover faster. This can be done through interval workouts, fartleks, hills, and bleacher/stair workouts. By continuously putting a high energy demand on your body and teaching it to keep working under stressful conditions you are actually pushing your Lactate Threshold back further and further.

Your body naturally produces lactate throughout the workout but when you do high intensity muscular endurance workouts you get to a point when the lactate overwhelms the system which gets rid of it. Once lactate production exceeds the removal capacity of the body it starts to accumulate in the blood stream. This is bad news because it interferes with the production of energy by the 3 systems I mentioned before. This begins the downward spiral to you ending up on the ground with vomit all over yourself. During workouts you push your body to its Lactate threshold but not passed it, this paired with your body’s awesome ability to adapt to new stresses over time will keep pushing the threshold further back. This is how people “get in shape”, they constantly put stress on the body which causes it to adapt until the previous level of stress is no longer as challenging.

Mental Toughness! My personal definition of mental toughness is being able to push yourself to do what you have to do even when it hurts. My favorite example of this is the 400m dash. The 400 meters is a great but terrible race for no matter who you are/how fast you are the last 100 meter are ALWAYS going to hurt. The high school scrub who runs 53 seconds and the all-star who runs 46 seconds are both hating life during that last straightaway. The difference being that the all-star has taught himself to ignore the pain and maintain form, meanwhile the scrub is thinking too much about the burning in his quads while his arms flail everywhere and everyone flies by. It’s the mental fortitude to ignore how tired you are and being able to remain focused on the task at hand that separates champions from benchwarmers. Only by constantly putting your body in this tired state, through running workouts, and testing your mental fortitude will you get tougher.

                                           Only the toughest person wins the race!

Form

    The reason why coaches are such sticklers about form is because bad form sacrifices efficiency. There’s a reason why all the fast people on TV look the same when they run! Good form allows you to use you’re body’s levers to your advantage and to properly direct the force you’re putting on the ground. In layman’s terms, it lets you do work while expending less energy. This makes the difference in the end of the race/game when everyone is tired. Whoever has the most energy left will win 9 times out of 10. The simplest running form drill that will work wonders when performed correctly are:

-A Skips

-B Skips

-High Knees

-Butt Kicks

-Straight Leg Bounds

-Alternating Quick Leg

-Falling Starts

These drills not only work on running form but also coordination. They can do wonders for kids and adults who lack the coordination to run properly.

 

**Front pack = world class times, stragglers = average times, form made the difference!**

Genetics

    As much as I would love to say we are all equal and have the exact same potential, that would be a lie. I’m a firm believer in genetic superiority. We all knew that guy in high school or college that had the drive to work hard but barely improved every season. On the flip side, we all had that friend who never tried hard at all and was still the best on the team. You can only fight your genetics so much! HOWEVER, that doesn’t mean you can’t achieve greatness! Sure you may not be a national champion but being All-State or Conference Champ is still pretty awesome. There is still plenty of glory to be had, you just have to go out there and get it! Even if you don’t win but set a personal best, that still means you are now better than you’ve ever been, there should be some small amount of satisfaction there! So what if you’re genes aren’t the best it doesn’t mean you can’t get faster! Odds are you’re not even close to hitting your genetic ceiling, aka you’re body’s full potential. Do work and worry about the factor you can control.

                        **We can’t all be the greatest athlete in the world, but we can try ;)**

Read More

A Prerequisite to Lifting Heavy Things: Stability

In my last article, I talked about the need for correct mobility in your exercises and workout. Mobility is extremely important and should always be addressed early on to ensure good positioning and a full range of motion in your lift. Mobility, however is only one part of the puzzle. There’s another aspect that the yogis don’t like to talk about and many people get confused with a BOSU ball: Stability

Mobility and Stability are the two components that provide the frame-work of movement. Mobility is the ability of a joint to move through a given range of motion, whereas stability is the ability to resist being moved. From a biomechanics stand-point they are like yin and yang, positive and negative, peanut butter and jelly. One cannot exist without the other. They are both equally important in training, however the body will always choose stability over mobility for safety and compensations.

Dr. Perry of Stop Chasing Pain is known for his saying, “stability rules the road.” What he means by that is that your body will always give up mobility in whatever joint it needs to create a stable environment if there is dysfunction(muscles not working properly). Will that cause pain and compensation patterns? Probably, but not always. If muscles aren’t working right, then they will not be able to control the motions in joints, and your body doesn’t trust that, so it will lock it down. It’s very similar to walking on ice. When you’re on the ice, you naturally stiffen up, and you consciously will keep your legs in and tight, not using big strides.

So essentially, if you lose stability, you will lose mobility somewhere else. It follows the joint by joint approach just as mobility did in my last article. This is why it doesn’t make sense to just stretch or just to weight train. When I talked about how to create proper mobility, step 4 was ACTIVATE. This is where stability is created, in the hopes that it will start to become automatic when used with movement.

The Misconceptions:

Stiffness is the Same as Stability

Many people confuse this notion of creating stability with creating stiffness. For an area to be stable, you want it to be tense/active during the appropriate movement and yet supple when not in use.

If you’re doing 50 reverse hyperextensions a day to keep your low back, “stable,” then you’re just creating stiffness by overusing the muscles and there for doing it wrong. If you want to create true stability in a particular area, then you must train that muscle/area as a stabilizer.

Stability training is done on bosus and wobble boards

Creating true stability in a joint DOES NOT need to be done on an unstable surface. It is done by creating mobility and then using a particular area as a stabilizer to hold a particular position. This is not to say that using a BOSU or wobble-board is always wrong. They do have their time and place for rehab, but that’s another topic for a blog post.

Anyway, an example of using a muscle as a stabilizer that I like is using the ½ knealing position for variations on exercises to help create some glute stability and open up the front of the hips. What about the guy doing the 50 hyperextensions? Well how about just try some simple plank variations or maybe even a kettlebell halo instead.

Read More

Maximize Each Workout: 3 Practical Tips on Mindset

The mindset associated with any training plan is really what makes the difference in achieving your goals. Sets, reps, exotic exercise selection, equipment, etc. doesn't make a drop of difference if you are only 60% engaged, focused, and mentally committed. Here are 3 practical tips to get you in the zone - and keep you there - for your next workout session:

 

  • Music: I think everybody knows about this one, but it bears repeating. Music is so powerful because it has the ability to change your mindset and push you in the direction you want to go or need to be for a great training session.
  • Environment: Make sure your training environment is conducive to you achieving (and be able to focus on achieving) your goals. Constantly getting stopped by other gym members to chat? Always feeling ashamed of making any noise whatsoever? Tired of being harassed for breaking out chalk? Well, all these are signs that you may need to reconsider your training environment and get into one that supports your focus and goals.
Planet Fitness Lunk Alarm

Alright, you've got at least two of three tips that you can implement TODAY to get your training dialed up and instantly more productive.

Read More

Strength: You're Doing it Wrong! Part 2

In the first installment of this series, we dived into a couple of the fundamental errors many folks tend to make while on the quest to become stronger. In case you missed it (shame on you), you can check it out with the link provided above; otherwise, let's get right to it and pick up where we left off!

"You're Doing It Wrong" #3 - Overkill

In case you're wondering what overkill looks like within the context of a strength and conditioning program, Dan John once gave a fantastic illustration of it: "If jumping off a box helps my vertical, then jumping off of a building will help that much more." 

People often make the mistake of taking an idea, or something that may be good either in moderation or a specific context, and carrying it to the extreme:

- "I've heard that focused periods of training with loads of 90%+ will augment my one-rep max, so I'll employ them all the time, every day." - "Since a few sets here and there of isolated bicep curls may develop connective tissue quality of the biceps tendons, I'll do thirty sets a week!" - "Strong lifters use bands for accommodating resistance, so I should use them, too." - "Three sets of heavy squats will make me stronger, so doing twelve heavy sets must have four times the effect."

Here's a tip. Always do the least required - be it intensity, volume, or using "secret powerful" methods - to incite the desired adaptation. This way, you can save the higher intensities, volumes, etc. for later in your training when they become essential for continued improvement. (Note: I discussed this in further detail, via the concept of the minimum effective dose, HERE.)

"You're Doing It Wrong" #4 - Sacrificing Form for Weight on the Bar

Putting it another way: sacrificing form to stroke your ego.

How many times do you see "that guy" deadlifting with a rounded back, squatting with the knees wobbling all over the place, or bench pressing with the bar bouncing off his chest like a trampoline?

Sure, sometimes it can be a simple lack of education - he (or she) hasn't been coached correctly on the ability to perform fundamental human movement. But other times, and this is more often the case (at least with males), is that people don't wish to take the time - and by extension refuse to exercise patience and discipline - to learn the various movements correctly. They don't care that adding fifty more pounds to the bar causes complete breakdown in form, as long as it means they can satisfy their egos by lifting fifty more pounds.

Dr. Kelly Starrett summed this up quite nicely: "Sacrificing good form will cannibalize your potential benefits."

Be it training to get stronger, run faster, jump higher, or simply improve your quality of life, lifting with poor form does absolutely nothing for you. Well, other than eventually showing up on your doorstep to exact payment by means of pain or injury.

(Note: for those of you who think one can't lift any appreciable weight with good form, check out the video below with Jeremy Frey.)

You can do pushups with your low back sagging toward the floor and your elbows flared, deadlift with a flexed (or hyperextended) lumbar spine, bench with your shoulders protruding forward, squat with the knees collapsing, overhead press with all sorts of compensation patterns, until one day....you can't. 

Who cares who is around you or who may be watching. Recognize that you are in this for life, that a lot of small improvements add up to quite a bit, and that greatness isn't achieved in a day. Exercise the patience and discipline of a true professional.

"You're Doing It Wrong" #5 - Adding Too Many "Finishers"

Confession: I have a slight masochist streak in me, which loves to push my body to the brink of destruction on occasion. And I think it's evident that quite a few others do, as well, which is why sports such as CrossFit are so popular.

However, constantly pushing our body's limits - either as the training session itself, or as a "finisher" at the end of the strength training - will undoubtedly hinder strength gains.

You can only chase so many goals at one time, and it's easy to fall into the "I want it all! Now!" trap.  More strength, more endurance, more flexibility, more hypertrophy, etc. Attempting to achieve all these things, concurrently, is akin riding multiple horses with one saddle: rarely does it end well. 

Using myself as an example: back when I discovered the "wonderful" world of metabolic circuits and Tabatas, I'd throw them in at the end of every strength training session thinking that it would automatically turn me into a lean, mean, fighting machine. My primarily goal was strength improvements (I was following a powerlifting-centric program at the time) but me, in all my intelligent greatness, thought it'd be wise to throw in crazy finishes at the end of each session to improve my work capacity and keep body fat at bay.

Did I become pretty decent at doing a lot of squat thrust + tuck jumps in a short period of time? Sure....but to what end? Did I get stronger throughout the course of the program? Not so much.

At least, not nearly as much as I could have had I not committed such wanton foolery at the end of each strength training session. Our bodies can only handle so many competing demands; you can only get so far by trying to simultaneously train for both strength and the anaerobic lactic system.

Keep the goal.....well, keep the goal, the goal! If your goal is strength, then your actions should reflect this. 20-rep deadlifts in a circuit, for time, is not strength training.

I'm not poo-pooing on those who enjoy circuit training or want to add a "metabolic boost" to each training session. To each their own. But I do feel many miss the mark when it comes to choosing a goal and seeing it to the end. If you want to get better at circuit training, then do circuit training. But if you want to get stronger, then, well, do things that will make you stronger, and focus on those things alone.

Now, just because strength may be your primary goal, this doesn't necessitate you allowing yourself to fall so far by the wayside that you become winded from climbing a small flight of stairs. In fact, smart cardiovascular activity will only aid you in your quest to carry, push, and pull heavy objects. Just follow these rules with any conditioning you do:

  1. If you're worried about increased bodyfat levels, do your due diligence in the kitchen. A rule we use with our athletes at SAPT is that training should NEVER be used to make up for irresponsibility in the kitchen.
  2. Don't be an idiot.
  3. If you do need to develop your work capacity, go about it in an intelligent manner. Monitor your heart rate, employ joint-friendly modalities, and track your strength gains to ensure you're still moving in the right direction.

Examples for the Strength Enthusiast

- For some examples of joint-friendly conditioning options, check out the series I put together HERE and HERE.

Hill sprints are another great option.

- Todd Bumgardner also put together a solid article at T-Nation, A Practical Guide to GPP, in which he lays out some good options, along with providing advice on when to put focused periods of GPP (general physical preparedness) into your program.

- Tim Henriques wrote a great article, Cardio for Strength Athletes, that discuss and provides awesome guidelines for....well, I think the title is self-explanatory.

"You're Doing It Wrong" #6 - Training at Too High of a Percentage Relative to Your One-Rep Maximum

I tell you truly, it really is incredible how strong one can become by lifting with submaximal loads. While yes, there certainly are times to push it and incorporate periods of lifting close to your max, there's much to be said for maintaining solid bar speed and keeping the load low(ish) in training.

Yes, I am biased, as I work predominantly with athletes and I'm always seeking ways to make them stronger and faster with minimal risk of injury, but many successful powerlifters have (successfully) utilized this approach, as well.

Two quick examples of student-athletes at SAPT. Here is Carson, now at UVA and competing in powerlifting, who we helped take his deadlift max from 410lbs to 445lbs, never using loads higher than 365lbs in training!

And here is Red Dowdell (now playing Division I baseball at VMI) who trained at SAPT in-season during his senior year of baseball. I kid you not, we never had him lift anything higher than 275lbs during his in-season training, and yet he was able to pull 405lbs post-season. (His previous best was 325lbs.)

That's a 35lb and 80lb improvement, all accomplished while using loads well less than 90% of what they were actually capable of doing in training.

It's amazing what you can accomplish by ceasing to obsess over weight liftedin training as your sole benchmark for improvement, rather than improving rate of force development, honing technique, and judiciously manipulating frequency, volume, and other training variables to make yourself stronger and more powerful.

And the stronger you become, the more imperative it becomes to astutely plan and cycle periods of higher loading, given that your nervous system is more efficient and you recruit more higher-threshold motor units than you did as a beginner. While a beginner may be able to get away with regularly training close to their max, stronger individuals become absolutely fried from doing this too regularly. What may be 90% for a 700lb deadlifter (630lbs), will have a much different impact/effect on the human animal than 90% for a 200lb deadlifter (180lbs).

"You're Doing It Wrong" #7 - Failing to Train with Purpose

Even though, in the points outlined above, I touched on concepts of good form, not going too heavy, and never doing more than is required, this doesn't mean that you can expect to become stronger without training with conviction, purpose, and intent to succeed.

Those who constantly check their cell phones for texts and Facebook or Twitter updates, and those who converse with others while the bar is on their back, will always see sub-par results compared to those who train with some freaking purpose.

Don't just go through the motions! Put the magazine down, grab the bar as tight as humanly possible, and move it like you mean it!

When you walk on to your respective training grounds - be it your garage, a commercial gym, or an awesome performance institute like SAPT - let go of everything that was plaguing you outside the facility walls. Traffic, girlfriend/boyfriend problems, co-workers driving you nuts, celebrity news tempting you to read the magazine on the shelf, it all doesn't matter.

Focus on the task at hand, and then be amazed as you reach new heights.

Read More
Review - Social Graphic - Small Thanks.jpg